By Topic

Detection of Land-Cover Transitions in Multitemporal Remote Sensing Images With Active-Learning-Based Compound Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Demir, B. ; Dept. of Inf. Eng. & Comput. Sci., Univ. of Trento, Trento, Italy ; Bovolo, F. ; Bruzzone, L.

This paper presents a novel iterative active learning (AL) technique aimed at defining effective multitemporal training sets to be used for the supervised detection of land-cover transitions in a pair of remote sensing images acquired on the same area at different times. The proposed AL technique is developed in the framework of the Bayes' rule for compound classification. At each iteration, it selects the pair of spatially aligned unlabeled pixels in the two images that are classified with the maximum uncertainty. These pixels are then labeled by an external supervisor and included in the training set. The uncertainty of a pair of pixels is assessed by the joint entropy defined by considering two possible different simplifying assumptions: 1) class-conditional independence and 2) temporal independence between multitemporal images. Accordingly, different algorithms are introduced. The proposed joint-entropy-based AL algorithms for compound classification are compared with each other and with a marginal-entropy-based AL technique (in which the entropy is computed separately on single-date images) applied to the postclassification comparison method. The experimental results obtained on two multispectral and multitemporal data sets show the effectiveness of the proposed technique.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:50 ,  Issue: 5 )