Cart (Loading....) | Create Account
Close category search window
 

Power Synthesis for Reconfigurable Arrays by Phase-Only Control With Simultaneous Dynamic Range Ratio and Near-Field Reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Buttazzoni, G. ; Univ. of Trieste, Trieste, Italy ; Vescovo, R.

An iterative method of power synthesis for reconfigurable arrays of arbitrary geometry is presented, which is based on the method of successive projections. The algorithm allows to synthesize a number of desired patterns, each reconfigurable into any of the others by phase-only control. The excitation amplitudes are optimized, and their dynamic range ratio (DRR) is reduced below a given threshold. Furthermore, the radiated field can be reduced below a prescribed level in a given region close to the antenna. As a particular important case, the method allows to perform a “discrete” phase controlled beam-scanning.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:60 ,  Issue: 2 )

Date of Publication:

Feb. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.