By Topic

Light Emission Enhancement From Er-Doped Silicon Photonic Crystal Double-Heterostructure Microcavity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Yue Wang ; State Key Laboratory on Integrated Opt- oelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China ; Jiashun Zhang ; Yuanda Wu ; Junming An
more authors

We experimentally demonstrate efficient light emission enhancement from Si with Er/O co-implanting coupled to 2-D hexagonal photonic crystal (PC) double-heterostructure microcavity fabricated on silicon-on-insulator. A single sharp resonant peak with 1552.2 nm communication wavelength dominates the photoluminescence (PL) spectrum and 35-fold PL intensity enhancement is obtained compared to the case of identically implanted silicon-on-insulator wafer at room temperature. The obvious red-shift and degraded Q-factor of resonant peak are present with the excitation power increasing, and the maximum measured Q-factor of 3829 is found at 1.5 mW power. The resonant peak is observed to shift depending on the structural parameters of PC.

Published in:

IEEE Photonics Technology Letters  (Volume:24 ,  Issue: 2 )