By Topic

Multiple model moving horizon estimation approach to prognostics in coupled systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Bharath Pattipati ; Department of Electrical and Computer Engineering, University of Connecticut, 371 Fairfield Road, U-2157, Storrs, 06269, USA ; Chaitanya Sankavaram ; Krishna Pattipati ; Yilu Zhang
more authors

The key objectives of this paper are to analyze and implement a novel moving horizon model predictive estimation scheme based on constrained nonlinear optimization techniques for inferring the survival functions and residual useful life (RUL) of components in coupled systems. The approach employs a data-driven prognostics framework that combines failure time data, static and dynamic (time-series) parametric data, and the Multiple Model Moving Horizon Estimation (MM-MHE) algorithm for predicting the survival functions of components based on their usage profiles. Validation of the approach has been provided based on data from an electronic throttle control (ETC) system. The proposed prognostic approach is modular and has the potential to be applicable to a wide variety of systems, ranging from automobiles to aerospace.

Published in:

2011 IEEE AUTOTESTCON

Date of Conference:

12-15 Sept. 2011