By Topic

Validation of Soil Moisture and Ocean Salinity (SMOS) Soil Moisture Over Watershed Networks in the U.S.

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Thomas J. Jackson ; Hydrology and Remote Sensing Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, USA ; Rajat Bindlish ; Michael H. Cosh ; Tianjie Zhao
more authors

Estimation of soil moisture at large scale has been performed using several satellite-based passive microwave sensors and a variety of retrieval methods over the past two decades. The most recent source of soil moisture is the European Space Agency Soil Moisture and Ocean Salinity (SMOS) mission. A thorough validation must be conducted to insure product quality that will, in turn, support the widespread utilization of the data. This is especially important since SMOS utilizes a new sensor technology and is the first passive L-band system in routine operation. In this paper, we contribute to the validation of SMOS using a set of four in situ soil moisture networks located in the U.S. These ground-based observations are combined with retrievals based on another satellite sensor, the Advanced Microwave Scanning Radiometer (AMSR-E). The watershed sites are highly reliable and address scaling with replicate sampling. Results of the validation analysis indicate that the SMOS soil moisture estimates are approaching the level of performance anticipated, based on comparisons with the in situ data and AMSR-E retrievals. The overall root-mean-square error of the SMOS soil moisture estimates is 0.043 m3/m3 for the watershed networks (ascending). There are bias issues at some sites that need to be addressed, as well as some outlier responses. Additional statistical metrics were also considered. Analyses indicated that active or recent rainfall can contribute to interpretation problems when assessing algorithm performance, which is related to the contributing depth of the satellite sensor. Using a precipitation flag can improve the performance. An investigation of the vegetation optical depth (tau) retrievals provided by the SMOS algorithm indicated that, for the watershed sites, these are not a reliable source of information about the vegetation canopy. The SMOS algorithms will continue to be refined as feedback from validation is evaluated, and it is expe- ted that the SMOS estimates will improve.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:50 ,  Issue: 5 )