By Topic

A Mobile Communication Base Station Antenna Using a Genetic Algorithm Based Fabry-Pérot Resonance Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dongho Kim ; Dept. of Electron. Eng., Sejong Univ., Seoul, South Korea ; Jeongho Ju ; Jaeick Choi

We proposed a high-gain wideband resonant-type mobile communication base station antenna using a Fabry-Pérot cavity (FPC) technique. To overcome inherent narrow radiation bandwidth of FPC-type antennas while keeping relatively high gain, we introduced a new superstrate structure composed of square patches and loops, which satisfies an FPC resonance condition at a target frequency region. To do that, we optimized the superstrate geometry with the help of a real-value coding hybrid genetic algorithm (RHGA). The optimized superstrate is very thin, and therefore, it can be fabricated with a single dielectric substrate, which is a fairly strong point in practical applications. Moreover, we enclosed four openings of the antenna in lateral directions to increase antenna gain with a limited aperture area. Therefore, a modified prediction method of an FPC resonance is used, which reduced the effort of complicated three-dimensional antenna optimization. Consequently, our antenna is able to operate in a wide band-width with a relatively high realized gain. Furthermore, good agreement between measured results and prediction ones confirms the validity of our design approach.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:60 ,  Issue: 2 )