Cart (Loading....) | Create Account
Close category search window
 

Beamformer Design Methods for Radio Astronomical Phased Array Feeds

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Elmer, M. ; Dept. of Electr. & Comput. Eng., Brigham Young Univ., Provo, UT, USA ; Jeffs, B.D. ; Warnick, Karl F. ; Fisher, J.R.
more authors

A major emphasis in current radio astronomy instrumentation research is the use of phased array feeds (PAF) to provide radio telescopes with larger fields of view. One of the challenges of PAF systems is the design of beamformers that provide sufficient sensitivity and known, stable beam pattern structure. High sensitivity has been achieved with the maximum sensitivity beamformer without regard to beam pattern shape. Deterministic beamformers provide the desired pattern shape control, but suffer from a significant reduction in sensitivity. We present a hybrid beamforming method, which balances the tradeoff between high sensitivity and precise beam pattern shape control. A comparison of each of these beamforming methods, using measured data, confirms the advantage of the hybrid approach. The pattern distortions introduced by modeled beamformers can be mitigated with a transformation step, but ultimately it is shown that PAF beamformer design is best done using measured calibrators. A PAF calibration vector quality metric based on minimum description length is also introduced.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:60 ,  Issue: 2 )

Date of Publication:

Feb. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.