By Topic

Hybrid RF Mapping and Kalman Filtered Spring Relaxation for Sensor Network Localization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Boon-Chong Seet ; Department of Electrical and Electronic Engineering, Auckland University of Technology, Auckland, New Zealand ; Qing Zhang ; Chuan Heng Foh ; Alvis C. M. Fong

An accurate and low-cost hybrid solution to the problem of autonomous self-localization in wireless sensor networks (WSN) is presented. The solution is designed to perform robustly under challenging radio propagation conditions in mind, while requiring low deployment efforts, and utilizing only low-cost hardware and light-weight distributed algorithms for location computation. Our solution harnesses the strengths of two approaches for environments with complex propagation characteristics: RF mapping to provide an initial estimate of each sensor's position based on a coarse-grain RF map acquired with minimal efforts; and a cooperative light-weight spring relaxation technique for each sensor to refine its estimate using Kalman filtered inter-node distance measurements. Using Kalman filtering to pre-process noisy distance measurements inherent in complex propagation environments, is found to have significant positive impacts on the subsequent accuracy and the convergence of our spring relaxation algorithm. Through extensive simulations using realistic settings and real data set, we show that our approach is a practical localization solution which can achieve sub-meter accuracy and fast convergence under harsh propagation conditions, with no specialized hardware or significant efforts required to deploy.

Published in:

IEEE Sensors Journal  (Volume:12 ,  Issue: 5 )