Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

A theory of fault-tolerant routing in wormhole networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Duato, J. ; Fac. de Inf., Univ. Politecnica de Valencia, Spain

Fault-tolerant systems aim at providing continuous operation in the presence of faults. Multicomputers rely on an interconnection network between processors to support the message-passing mechanism. Therefore, the reliability of the interconnection network is very important for the reliability of the whole system. This paper analyzes the effective redundancy available in a wormhole network by combining connectivity and deadlock freedom. Redundancy is defined at the channel level. We propose a sufficient condition for channel redundancy, also computing the set of redundant channels. The redundancy level of the network is also defined, proposing a theorem that supplies its value. This theory is developed on top of our necessary and sufficient condition for deadlock-free adaptive routing. The new theory also considers the failure of physical channels when virtual channels are used. Finally, we propose a methodology for the design of fault-tolerant routing algorithms, showing its application to n-dimensional meshes

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:8 ,  Issue: 8 )