By Topic

Impact of laser phase noise on the performance of a {3×3} phase and polarization diversity optical homodyne DPSK receiver

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
de Krom, W.H.C. ; Dept. of Electr. Eng., Eindhoven Univ. of Technol., Netherlands

An analysis of the impact of laser phase noise on the performance of a {3×3} phase- and polarization-diversity differential phase-shift keying (DPSK) receiver is done for the phase and shot-noise limited case. The results show that, for zero laser linewidths, the maximal signal power penalty of the {3×3} phase- and polarization-diversity DPSK receiver with respect to the conventional heterodyne DPSK receiver is approximately 0.7 dB for Pe =10-9. For nonzero laser linewidths, it appears that, depending on the laser linewidth, for large signal-to-noise ratios the performance of the analyzed {3×3} phase- and polarization-diversity DPSK receiver is close to that of the ideal conventional heterodyne DPSK receiver. For a rectangular intermediate-frequency filter, the maximum allowable normalized laser linewidth (Δυ×T) for the (3×3) phase and polarization diversity DPSK receiver is found to be approximately 0.46% for a power penalty of 1 dB

Published in:

Lightwave Technology, Journal of  (Volume:8 ,  Issue: 11 )