By Topic

Study on background modeling method based on robust principal component analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yuxi Wang ; School of Optics and Electronics, Beijing Institute of Technology, Beijing, China ; Yue Liu ; Lun Wu

Background modeling is one of the key techniques in video surveillance system. When the training images contain more moving objects or its number is not sufficient, the existing methods normally end up with incorrect background estimates. In this paper, we study a type of method on data analysis, i.e., Robust Principle Component Analysis (RPCA), and present its application on the background modeling. Unlike previous approaches based on statistics, the new method uses an advanced convex optimization technique that is theoretically guaranteed to be robust to large errors. Experimental results demonstrate that the proposed solution can robustly estimate the background from relatively few training images, even in the case of sudden change of lighting.

Published in:

Electrical and Control Engineering (ICECE), 2011 International Conference on

Date of Conference:

16-18 Sept. 2011