By Topic

Scattering losses from dielectric apertures in vertical-cavity lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hegblom, E.R. ; Dept. of Electr. & Comput. Eng., California Univ., Santa Barbara, CA, USA ; Babic, Dubravko I. ; Thibeault, Brian J. ; Coldren, L.A.

In vertical-cavity lasers (VCLs) employing oxide or airgap apertures, the lasing mode typically travels unguided throughout most of the structure. For the aperture to exactly compensate for the diffraction of the mode in these regions, it would need to have a parabolic lateral index profile (i.e. that of an ideal thin lens). Although nonparabolic aperture shapes will partially compensate diffraction losses, some light will be scattered out of the mode. These scattering losses increase as the aperture size is reduced and will limit the performance of the smallest devices. We analyze these losses first using a semianalytic approach which allows us to frame the problem in terms of two parameters of the structure: the Fresnel number and the effective optical path length across the aperture. We compare the estimate with experimental results and with an iterative numerical calculation of the actual mode and losses. Lastly, we compare the loss reduction with different amounts of tapering that provide a better approximation to the ideal parabolic lens

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:3 ,  Issue: 2 )