Cart (Loading....) | Create Account
Close category search window
 

The effect of carrier transport on the dynamic performance of gain-saturation wavelength conversion in MQW semiconductor optical amplifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Annetts, J. ; Dept. of Electr. Eng., Bristol Univ., UK ; Asghari, M. ; White, I.H.

This paper investigates the effect of carrier transport on the dynamic properties of wavelength conversion using gain-saturation in semiconductor optical amplifiers (SOAs). It is shown that the carrier transport slows the rise time of the probe optical power by about 10 ps, but the fall time of the probe power is not significantly slowed. However, the dynamics of the probe chirp are slowed by as much as 30-50 ps when operating at 5 Gb/s. The effect of the modified chirp dynamics due to transport is shown to give an additional dispersion penalty, but this is always less than 1 dB. Electrical feedforward of the optical signal input into the SOA is shown to improve extinction ratio of the conversion process. Carrier transport degrades performance of this scheme by up to 3 dB at high data rates. These results show that it is important to take the chirp performance of SOAs into account when designing them for long-haul communications

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:3 ,  Issue: 2 )

Date of Publication:

Apr 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.