Cart (Loading....) | Create Account
Close category search window
 

Rotational Magnetization in Transformer Cores—A Review

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Pfutzner, H. ; Inst. of Electrodynamics, Microwave & Circuit Eng. (EMCE), Vienna Univ. of Technol., Vienna, Austria ; Mulasalihovic, E. ; Yamaguchi, H. ; Sabic, D.
more authors

Usually, rotational magnetization (RM) is associated with rotating machine cores. However, in more restricted ways, it also arises in three-phase transformer cores. Modern designs of T-joint yield detours of flux, as a source of RM in the T-joint, the middle limb ends, as well as in the yokes. Simulation of RM is possible by means of so-called rotational single sheet testers which should consider the large grains of highly grain oriented materials. Their high effective anisotropy yields induction patterns of rhombic or lancet-like type with maximum values of axis ratio a up to 0.5, and very high angular velocity round the materials hard directions. Compared to elliptic RM-as arising in non-oriented materials-the corresponding losses are lower due to restricted induction in the hard direction. But they show strong increase with (i) rising a and (ii) rising angular velocity of the induction vector. The magnetostrictive strain shows a pronounced (negative) maximum in the rolling direction with values up to 10 ppm, the transverse direction and normal direction exhibiting positive maxima of lower extent. With respect to industrial relevance, significant RM effects are restricted to the vicinities of T-joints. They represent the location of maximum core loss and also of maximum magnetostrictive strain as a source of audible core noise.

Published in:

Magnetics, IEEE Transactions on  (Volume:47 ,  Issue: 11 )

Date of Publication:

Nov. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.