By Topic

Pose Estimation Through Cue Integration: A Neuroscience-Inspired Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Eris Chinellato ; Robotic Intelligence Laboratory, Jaume I University, Castellón de la Plana, Spain ; Beata J. Grzyb ; Angel P. del Pobil

The aim of this paper is to improve the skills of robotic systems in their interaction with nearby objects. The basic idea is to enhance visual estimation of objects in the world through the merging of different visual estimators of the same stimuli. A neuroscience-inspired model of stereoptic and perspective orientation estimators, merged according to different criteria, is implemented on a robotic setup and tested in different conditions. Experimental results suggest that the integration of multiple monocular and binocular cues can make robot sensory systems more reliable and versatile. The same results, compared with simulations and data from human studies, show that the model is able to reproduce some well-recognized neuropsychological effects.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:42 ,  Issue: 2 )