By Topic

1.3-μm InGaAsP-InP n-type modulation-doped strained multiquantum-well lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Nakahara, K. ; Central Res. Lab., Hitachi Ltd., Tokyo, Japan ; Uomi, K. ; Tsuchiya, T. ; Niwa, Atsuko
more authors

The use of n-type modulation doping to reduce the threshold current, the carrier lifetime, and the internal loss in 1.3-μm InGaAsP-InP strained multiquantum-well (MQW) lasers is experimentally demonstrated. The threshold current density, the carrier lifetime, and the internal loss were reduced by about 33%, 36%, and 28%, respectively, as compared with an undoped MQW laser. Moreover, the turn-on delay time in the n-type modulation-doped MQW lasers with a low-leakage buried heterostructure was reduced by about 35%. These results confirm the suitability of this type of laser for use in the basic structure of a monolithic laser array used as a light source for high-density parallel optical interconnection

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:3 ,  Issue: 2 )