By Topic

Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chen, Y.F. ; Precision Instrum Dev. Center, Nat. Sci. Council, Hsinchu, Taiwan ; Huang, T.M. ; Kao, C.F. ; Wang, C.L.
more authors

The optimum mode-to-pump ratio in scaling fiber-coupled laser-diode end-pumped lasers to higher power has been investigated by including the thermal effect into the space-dependent rate equation analysis. The optical path difference (OPD) distribution has been derived as a function of the pump-beam quality, focus position of pumping light, and pump radius at the focal plane under the assumption that the end faces of the crystal are thermally insulated. The diffraction losses arising from thermally induced spherical aberration have been estimated by the Strehl intensity ratio. The present results for the optimum mode-to-pump ratio are markedly different from previous analyses in which thermal effects are neglected. Here, the optimum mode-to-pump ratio is a decreasing function of input pump power, and is less than unity in the case of a slightly high pump power. The practical example of a Nd:YAG laser pumped by a 13-W fiber-coupled laser diode is considered to confirm our physical analysis

Published in:

Quantum Electronics, IEEE Journal of  (Volume:33 ,  Issue: 8 )