Cart (Loading....) | Create Account
Close category search window
 

A quantitative comparison of the classical rate-equation model with the carrier heating model on dynamics of the quantum-well laser: the role of carrier energy relaxation, electron-hole interaction, and Auger effect

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wang, Jian ; Phys. Inst., Stuttgart Univ., Germany ; Schweizer, H.C.

In this paper, a quantitative theoretical comparison of the classical rate-equation model with the carrier heating model for large signal dynamic response of 1.5-μm InGaAs-InGaAsP single-mode quantum-well (QW) lasers Is performed. The contributions of carrier energy relaxation, electron-hole interaction, and Auger effect to the nonlinear gain are inspected in detail by a numerical comparison of the two models at room temperature (293 K) and low temperature (50 K). It can be shown that contribution of the carrier heating to the nonlinear gain coefficient is proportional to an effective carrier energy relaxation time, and the contribution of the electron-hole energy exchange time shows a nonlinear relation. Furthermore, the influence of Auger heating on the modulation dynamics is also considered and is found to be indescribable by a single phenomenological nonlinear gain coefficient. The dependence of the nonlinear gain coefficient on the laser emission wavelength of distributed feedback lasers is also demonstrated quantitatively for the first time

Published in:

Quantum Electronics, IEEE Journal of  (Volume:33 ,  Issue: 8 )

Date of Publication:

Aug 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.