Cart (Loading....) | Create Account
Close category search window

Joint Reduction of Peak-to-Average Power Ratio, Cubic Metric, and Block Error Rate in OFDM Systems Using Network Coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kim, R.Y. ; Sch. of Comput. Eng., Kyungil Univ., Gyeongsan, South Korea ; Young Yong Kim ; Yazdi, A.A. ; Sorour, S.
more authors

The reductions of peak-to-average power ratio (PAPR) and block error rate (BLER) are two challenges in wireless systems employing orthogonal frequency-division multiplexing (OFDM)/orthogonal frequency-division multiple access. High BLER renders the system unreliable, and high PAPR is associated with power inefficiency and nonlinearity of the system. These two issues have separately been studied in the literature, but few works have studied simultaneous reductions of PAPR and BLER. In this paper, we propose a new scheme to jointly reduce and tradeoff PAPR and BLER in OFDM systems using random network coding (NC). In our proposed scheme, different representations of the input information block are generated using a special form of NC matrices, for which we prove it achieves the minimum BLER. We then propose an additional step to our proposed scheme to tradeoff a further improvement in PAPR against degradation in BLER using encoded block puncturing. Simulation results show that the proposed scheme achieves the same PAPR as conventional selective mapping (C-SLM) schemes while achieving the minimum BLER. We also show through simulations the PAPR gains achieved by our proposed additional step over C-SLM and the tradeoff of this gain against BLER degradation. Simulations finally show that our proposed scheme achieves the same results for the recently developed cubic metric.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:60 ,  Issue: 9 )

Date of Publication:

Nov. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.