By Topic

Human Gait Modeling Using a Genetic Fuzzy Finite State Machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Alberto Alvarez-Alvarez ; Computing with Perceptions Research Unit, European Centre for Soft Computing, Mieres, Asturias, Spain ; Gracian Trivino ; Oscar Cordon

Human gait modeling consists of studying the biomechanics of this human movement. Its importance lies in the fact that its analysis can help in the diagnosis of walking and movement disorders or rehabilitation programs, among other medical situations. Fuzzy finite state machines can be used to model the temporal evolution of this type of phenomenon. Nevertheless, the definition of details of the model in each particular case is a complex task for experts. In this paper, we present an automatic method to learn the model parameters that are based on the hybridization of fuzzy finite state machines and genetic algorithms leading to genetic fuzzy finite state machines. This new genetic fuzzy system automatically learns the fuzzy rules and membership functions of the fuzzy finite state machine, while an expert defines the possible states and allowed transitions. Our final goal is to obtain a specific model for each person's gait in such a way that it can generalize well with different gaits of the same person. The obtained model must become an accurate and human friendly linguistic description of this phenomenon, with the capability to identify the relevant phases of the process. A complete experimentation is developed to test the performance of the new proposal when dealing with datasets of 20 different people, comprising a detailed analysis of results, which shows the advantages of our proposal in comparison with some other classical and computational intelligence techniques.

Published in:

IEEE Transactions on Fuzzy Systems  (Volume:20 ,  Issue: 2 )
IEEE Biometrics Compendium
IEEE RFIC Virtual Journal
IEEE RFID Virtual Journal