By Topic

Adaptively Modulated OFDM RoF Signals at 60 GHz Over Long-Reach 100-km Transmission Systems Employing Phase Noise Suppression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chia-Chien Wei ; Department of Photonics, National Sun Yat-sen University, Kaohsiung, Taiwan ; Chun-Ting Lin ; Ming-I Chao ; Wen-Jr Jiang

We experimentally demonstrated the transmission performance of orthogonal frequency-division-multiplexing (OFDM) signals in a 60-GHz radio-over-fiber system over up to 100-km standard single-mode fiber employing an adaptive bit-loading algorithm. Considering dispersion-induced phase noise, the maximum capacities after different fiber distances are investigated with and without a phase noise suppression (PNS) algorithm for the first time. When a distributed-feedback (DFB) laser with the linewidth of 1.3~4.1 MHz is modulated to carry the radio signals, the PN will result in more than 21.5% capacity decrease after 100-km fiber and 3-m wireless link, and the PNS algorithm which needs no bandwidth-consuming pilot tones can accomplish more than 15.3% capacity increase.

Published in:

IEEE Photonics Technology Letters  (Volume:24 ,  Issue: 1 )