By Topic

Speaker age estimation and gender detection based on supervised Non-Negative Matrix Factorization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mohamad Hasan Bahari ; Centre for Processing Speech and Images, Katholieke Universiteit Leuven, Leuven, Belgium ; Hugo Van Hamme

In many criminal cases, evidence might be in the form of telephone conversations or tape recordings. Therefore, law enforcement agencies have been concerned about accurate methods to profile different characteristics of a speaker from recorded voice patterns, which facilitate the identification of a criminal. This paper proposes a new approach for speaker gender detection and age estimation, based on a hybrid architecture of Weighted Supervised Non-Negative Matrix Factorization (WSNMF) and General Regression Neural Network (GRNN). Evaluation results on a corpus of read and spontaneous speech in Dutch confirms the effectiveness of the proposed scheme.

Published in:

Biometric Measurements and Systems for Security and Medical Applications (BIOMS), 2011 IEEE Workshop on

Date of Conference:

28-28 Sept. 2011