By Topic

Distributed Covariance Estimation in Gaussian Graphical Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wiesel, A. ; Sch. of Comput. Sci. & Eng., Hebrew Univ. of Jerusalem, Jerusalem, Israel ; Hero, A.O.

We consider distributed estimation of the inverse covariance matrix in Gaussian graphical models. These models factorize the multivariate distribution and allow for efficient distributed signal processing methods such as belief propagation (BP). The classical maximum likelihood approach to this covariance estimation problem, or potential function estimation in BP terminology, requires centralized computing and is computationally intensive. This motivates suboptimal distributed alternatives that tradeoff accuracy for communication cost. A natural solution is for each node to perform estimation of its local covariance with respect to its neighbors. The local maximum likelihood estimator is asymptotically consistent but suboptimal, i.e., it does not minimize mean squared estimation (MSE) error. We propose to improve the MSE performance by introducing additional symmetry constraints using averaging and pseudolikelihood estimation approaches. We compute the proposed estimates using message passing protocols, which can be efficiently implemented in large scale graphical models with many nodes. We illustrate the advantages of our proposed methods using numerical experiments with synthetic data as well as real world data from a wireless sensor network.

Published in:

Signal Processing, IEEE Transactions on  (Volume:60 ,  Issue: 1 )