Cart (Loading....) | Create Account
Close category search window
 

Some Relations Between Extended and Unscented Kalman Filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gustafsson, F. ; Dept. of Electr. Eng., Linkoping Univ., Linkoping, Sweden ; Hendeby, G.

The unscented Kalman filter (UKF) has become a popular alternative to the extended Kalman filter (EKF) during the last decade. UKF propagates the so called sigma points by function evaluations using the unscented transformation (UT), and this is at first glance very different from the standard EKF algorithm which is based on a linearized model. The claimed advantages with UKF are that it propagates the first two moments of the posterior distribution and that it does not require gradients of the system model. We point out several less known links between EKF and UKF in terms of two conceptually different implementations of the Kalman filter: the standard one based on the discrete Riccati equation, and one based on a formula on conditional expectations that does not involve an explicit Riccati equation. First, it is shown that the sigma point function evaluations can be used in the classical EKF rather than an explicitly linearized model. Second, a less cited version of the EKF based on a second-order Taylor expansion is shown to be quite closely related to UKF. The different algorithms and results are illustrated with examples inspired by core observation models in target tracking and sensor network applications.

Published in:

Signal Processing, IEEE Transactions on  (Volume:60 ,  Issue: 2 )

Date of Publication:

Feb. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.