By Topic

GSGS: A Computational Approach to Reconstruct Signaling Pathway Structures from Gene Sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Acharya, L. ; Dept. of Comput. Sci., Univ. of New Orleans, New Orleans, LA, USA ; Judeh, T. ; Zhansheng Duan ; Rabbat, M.
more authors

Reconstruction of signaling pathway structures is essential to decipher complex regulatory relationships in living cells. The existing computational approaches often rely on unrealistic biological assumptions and do not explicitly consider signal transduction mechanisms. Signal transduction events refer to linear cascades of reactions from the cell surface to the nucleus and characterize a signaling pathway. In this paper, we propose a novel approach, Gene Set Gibbs Sampling (GSGS), to reverse engineer signaling pathway structures from gene sets related to the pathways. We hypothesize that signaling pathways are structurally an ensemble of overlapping linear signal transduction events which we encode as Information Flows (IFs). We infer signaling pathway structures from gene sets, referred to as Information Flow Gene Sets (IFGSs), corresponding to these events. Thus, an IFGS only reflects which genes appear in the underlying IF but not their ordering. GSGS offers a Gibbs sampling like procedure to reconstruct the underlying signaling pathway structure by sequentially inferring IFs from the overlapping IFGSs related to the pathway. In the proof-of-concept studies, our approach is shown to outperform the existing state-of-the-art network inference approaches using both continuous and discrete data generated from benchmark networks in the DREAM initiative. We perform a comprehensive sensitivity analysis to assess the robustness of our approach. Finally, we implement GSGS to reconstruct signaling mechanisms in breast cancer cells.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:9 ,  Issue: 2 )