By Topic

Predicting Ligand Binding Residues and Functional Sites Using Multipositional Correlations with Graph Theoretic Clustering and Kernel CCA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gonzalez, A.J. ; Comput. & Inf. Sci. Dept., Univ. of Delaware, Newark, DE, USA ; Li Liao ; Wu, C.H.

We present a new computational method for predicting ligand binding residues and functional sites in protein sequences. These residues and sites tend to be not only conserved, but also exhibit strong correlation due to the selection pressure during evolution in order to maintain the required structure and/or function. To explore the effect of correlations among multiple positions in the sequences, the method uses graph theoretic clustering and kernel-based canonical correlation analysis (kCCA) to identify binding and functional sites in protein sequences as the residues that exhibit strong correlation between the residues' evolutionary characterization at the sites and the structure-based functional classification of the proteins in the context of a functional family. The results of testing the method on two well-curated data sets show that the prediction accuracy as measured by Receiver Operating Characteristic (ROC) scores improves significantly when multipositional correlations are accounted for.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:9 ,  Issue: 4 )