Cart (Loading....) | Create Account
Close category search window
 

Quantifying Dynamic Stability of Genetic Memory Circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yong Zhang ; Dept. of Electr. & Comput. Eng., Texas A&M Univ., College Station, TX, USA ; Peng Li ; Huang, G.M.

Bistability/Multistability has been found in many biological systems including genetic memory circuits. Proper characterization of system stability helps to understand biological functions and has potential applications in fields such as synthetic biology. Existing methods of analyzing bistability are either qualitative or in a static way. Assuming the circuit is in a steady state, the latter can only reveal the susceptibility of the stability to injected DC noises. However, this can be inappropriate and inadequate as dynamics are crucial for many biological networks. In this paper, we quantitatively characterize the dynamic stability of a genetic conditional memory circuit by developing new dynamic noise margin (DNM) concepts and associated algorithms based on system theory. Taking into account the duration of the noisy perturbation, the DNMs are more general cases of their static counterparts. Using our techniques, we analyze the noise immunity of the memory circuit and derive insights on dynamic hold and write operations. Considering cell-to-cell variations, our parametric analysis reveals that the dynamic stability of the memory circuit has significantly varying sensitivities to underlying biochemical reactions attributable to differences in structure, time scales, and nonlinear interactions between reactions. With proper extensions, our techniques are broadly applicable to other multistable biological systems.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:9 ,  Issue: 3 )

Date of Publication:

May-June 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.