Cart (Loading....) | Create Account
Close category search window

PLASMON: Data assimilation of the Earth's plasmasphere

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Collier, A.B. ; Hermanus Magn. Obs., Hermanus, South Africa ; Lichtenberger, J. ; Clilverd, M. ; Heilig, B.
more authors

The principal source and loss mechanisms in the Earth's radiation belts are currently not completely understood. Loss rates are important since they determine the duration of exposure of satellites to enhanced radiation conditions during a geomagnetic storm. The dominant loss process is relativistic electron precipitation via resonant interactions with a variety of wave modes. These interactions are governed by the characteristics of the plasmasphere. Current models provide an inadequate representation of the spatial and temporal evolution of the plasmasphere. In situ measurements of the plasmasphere provide only local characteristics and are thus unable to yield a complete global picture. Ground based measurements, based on the analysis of Very Low Frequency (VLF) whistlers and Field Line Resonances (FLRs), are able to describe large sections of the plasmasphere, extending over significant radial distances and many hours of local time. These measurements provide electron number and plasma mass densities. PLASMON is a funded FP7 project between 11 international partners. PLASMON intends to assimilate near real time measurements of plasmaspheric densities into a dynamic plasmasphere model. The VLF whistler analyses will be conducted by automatic retrieval of equatorial electron densities using data from AWDAnet. Equatorial mass densities will be constructed from FLR measurements along meridional magnetometer chains. The resulting model will facilitate the prediction of precipitation rates. The predicted rates will be compared to observations from the AARDDVARK network.

Published in:

General Assembly and Scientific Symposium, 2011 XXXth URSI

Date of Conference:

13-20 Aug. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.