By Topic

Detection of vehicles in shadow areas using combined hyperspectral and lidar data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shimoni, M. ; Dept. of Electr. Eng., SIC-RMA, Brussels, Belgium ; Tolt, G. ; Perneel, C. ; Ahlberg, J.

In an effort to overcome the limitations of small target detection in complex urban scene, complementary data sets are combined to provide additional insight about a particular scene. This paper presents a method based on shape/spectral integration (SSI) decision level fusion algorithm to improve the detection of vehicles in semi and deep shadow areas. A four steps process combines high resolution LIDAR and hyperspectral data to classify shadow areas, segment vehicles in LIDAR data, detect spectral anomalies and improves vehicle detection. The SSI decision level fusion algorithm was shown to outperform detection using a single data set and the utility of shape information was shown to be a way to enhance spectral target detection in complex urban scenes.

Published in:

Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International

Date of Conference:

24-29 July 2011