By Topic

Improved Binary Partition Tree construction for hyperspectral images: Application to object detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Silvia Valero ; Technical University of Catalonia (UPC), Barcelona, Spain ; Philippe Salembier ; Jocelyn Chanussot ; Carles M. Cuadras

This paper discusses hierarchical region-based representation using Binary Partition Tree in the framework of hyperspectral data. Based on region merging techniques, this region-based representation reduces the number of elementary primitives compared to the pixel based representation and allows a more robust filtering, segmentation, classification or information retrieval. The work presented here proposes a strategy for merging hyperspectral regions using a new association measure depending on canonical correlations relating principal coordinates. To demonstrate an example of BPT usefulness, a pruning strategy aiming at object detection is discussed. Experimental results demonstrate the good performances of BPT.

Published in:

Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International

Date of Conference:

24-29 July 2011