Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Structured sparse model based feature selection and classification for hyperspectral imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yuntao Qian ; Coll. of Comput. Sci., Zhejiang Univ., Hangzhou, China ; Jun Zhou ; Minchao Ye ; Qi Wang

Sparse modeling is a powerful framework for data analysis and processing. It is especially useful for high-dimensional regression and classification problems in which a large number of feature variables exist but the amount of training samples is limited. In this paper, we address the problems of feature description, feature selection and classifier design for hyperspectral images using structured sparse models. A linear sparse logistic regression model is proposed to combine feature selection and pixel classification into a regularized optimization problem with the constraint of sparsity. To explore the structured features, three-dimensional discrete wavelet transform (3D-DWT) is employed, which processes the hyperspectral data cube as a whole tensor instead of adapting the data to a vector or matrix. This allows more effective capturing of the spatial and spectral structure. The structure of the 3D-DWT features is imposed on the sparse model by group LASSO which selects the features on the group level. The advantages of our method are validated on the real hyperspectral data.

Published in:

Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International

Date of Conference:

24-29 July 2011