By Topic

Verification & validation of a semantic image tagging framework via generation of geospatial imagery ground truth

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Gleason, S.S. ; Oak Ridge Nat. Lab., Oak Ridge, TN, USA ; Dema, M. ; Sari-Sarraf, H. ; Cheriyadat, A.
more authors

As a result of increasing geospatial image libraries, many algorithms are being developed to automatically extract and classify regions of interest from these images. However, limited work has been done to compare, validate and verify these algorithms due to the lack of datasets with high accuracy ground truth annotations. In this paper, we present an approach to generate a large number of synthetic images accompanied by perfect ground truth annotation via learning scene statistics from few training images through Maximum Entropy (ME) modeling. The ME model [1,2] embeds a Stochastic Context Free Grammar (SCFG) to model object attribute variations with Markov Random Fields (MRF) with the final goal of modeling contextual relations between objects. Using this model, 3D scenes are generated by configuring a 3D object model to obey the learned scene statistics. Finally, these plausible 3D scenes are captured by ray tracing software to produce synthetic images with the corresponding ground truth annotations that are useful for evaluating the performance of a variety of image analysis algorithms.

Published in:

Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International

Date of Conference:

24-29 July 2011