By Topic

A new discrete fractional Fourier transform based on constrained eigendecomposition of DFT matrix by Largrange multiplier method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Soo-Chang Pei ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Chien-Cheng Tseng

This paper is concerned with the definition of the discrete fractional Fourier transform (DFRFT). First, an eigendecomposition of the discrete Fourier transform (DFT) matrix is derived by sampling the Hermite Gauss functions which are eigenfunctions of the continuous Fourier transform and by performing a novel error removal procedure. Then, the result of the eigendecomposition of the DFT matrix is used to define a new DFRFT. Finally, a numerical example is illustrated to demonstrate the proposed DFRFT is a better approximation to the continuous fractional Fourier transform than the conventional defined DFRFT

Published in:

Acoustics, Speech, and Signal Processing, 1997. ICASSP-97., 1997 IEEE International Conference on  (Volume:5 )

Date of Conference:

21-24 Apr 1997