Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Multiobjective genetic programming with adaptive clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ferariu, L. ; Dept. of Autom. Control & Appl. Inf., Gheorghe Asachi Tech. Univ. of Iasi, Iasi, Romania ; Burlacu, B.

This paper presents a new approach meant to provide an automatic design of feed forward neural models by means of multiobjective graph genetic programming. The suggested algorithm can deal with partially interconnected neural architectures and various types of global and local neurons within each hidden neural layer. It concomitantly ensures the reduction of variables and the selection of convenient model structures and parameters, by working on a set of graph-based encrypted individuals built via genetic programming with the guarantee of phenotypic and genotypic validity. In order to provide a realistic assessment of the neural models, the optimization is carried out subject to multiple objectives of different priorities. In relation to this idea, the authors propose a new Pareto-ranking strategy, which progressively guides the search towards the preferred zones of the exploration space. The fitness assignment procedure monitors the phenotypic diversity of the best individuals, as well as the convergence speed of the algorithm, and exploits the resulted heuristics for performing a preliminary clustering of individuals. The experimental trials targeting the identification of an industrial system show the capacity of the suggested approach to automatically build simple and precise models, whilst dealing with noisy data and scarce a priori information.

Published in:

Intelligent Computer Communication and Processing (ICCP), 2011 IEEE International Conference on

Date of Conference:

25-27 Aug. 2011