By Topic

Impact of endoscopic image degradations on LBP based features using one-class SVM for classification of celiac disease

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sebastian Hegenbart ; Department of Computer Sciences, Salzburg University, Austria ; Andreas Uhl ; Andreas Vécsei

The prevalence data of celiac disease have been continuously corrected upwards in the last years. An automated decision support system could improve the diagnosis and safety of the endoscopic procedure. An approach towards such a system is based on a one-class classifier (such as SVM) trained on celiac data only. By doing so, no special treatment of distorted image areas is needed. However, the performance of such a system is highly dependent on the discriminative power of the extracted features within an unconstrained environment such as the human bowel. Towards such a system we evaluate how well methods used in past work perform using a one-class SVM with images exhibiting common endoscopic image degradations such as blur, noise, light reflections and bubbles.

Published in:

Image and Signal Processing and Analysis (ISPA), 2011 7th International Symposium on

Date of Conference:

4-6 Sept. 2011