By Topic

Robust vehicle categorization from aerial images by 3D-template matching and multiple classifier system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Le Saux, B. ; Onera - The French Aerosp. Lab., Palaiseau, France ; Sanfourche, M.

We present a robust method for vehicle categorization in aerial images. This approach relies on a multiple-classifier system that merges the answers of classifiers applied at various camera angle incidences. The single classifiers are built by matching 3D-templates to the vehicle silhouettes with a local projection model that is compatible with the assumption of the little knowledge that we have of the viewing-condition parameters. We assess the validity of our approach on a challenging dataset of images captured in real-world conditions.

Published in:

Image and Signal Processing and Analysis (ISPA), 2011 7th International Symposium on

Date of Conference:

4-6 Sept. 2011