Cart (Loading....) | Create Account
Close category search window
 

Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Moulines, E. ; Dept. Signal, ENST, Paris, France ; Cardoso, J. ; Gassiat, E.

An approximate maximum likelihood method for blind source separation and deconvolution of noisy signal is proposed. This technique relies upon a data augmentation scheme, where the (unobserved) input are viewed as the missing data. In the technique described, the input signal distribution is modeled by a mixture of Gaussian distributions, enabling the use of explicit formula for computing the posterior density and conditional expectation and thus avoiding Monte-Carlo integrations. Because this technique is able to capture some salient features of the input signal distribution, it performs generally much better than third-order or fourth-order cumulant based techniques

Published in:

Acoustics, Speech, and Signal Processing, 1997. ICASSP-97., 1997 IEEE International Conference on  (Volume:5 )

Date of Conference:

21-24 Apr 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.