Cart (Loading....) | Create Account
Close category search window
 

Fast Power- and Slew-Aware Gated Clock Tree Synthesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jingwei Lu ; Electron. & Inf. Eng., Hong Kong Polytech. Univ., Hong Kong, China ; Wing-Kai Chow ; Chiu-Wing Sham

Clock tree synthesis plays an important role on the total performance of chip. Gated clock tree is an effective approach to reduce the dynamic power usage. In this paper, two novel gated clock tree synthesizers, power-aware clock tree synthesizer (PACTS) and power- and slew-aware clock tree synthesizer (PSACTS), are proposed with zero skew achieved based on Elmore RC model. In PACTS, the topology of the clock tree is constructed with simultaneous buffer/gate insertion, which reduces the switched capacitance. In PSACTS, a more practical clock slew constraint is applied. Compared to previous works, clock tree synthesis is done first and followed by the insertions of clock gates. The clock slew changes a lot after the insertions of clock gates in real cases. In our work, the clock tree is constructed simultaneously with the insertions of clock gates. This ensures the limitation of the clock slew can be strictly satisfied while the limitation of the clock slew is always applied in the real design. The experimental results show that the power cost of our work is smaller and the runtime is reduced. The slew rate constraint is satisfied with a small clock skew from SPICE estimation. Generally, our work has better performance, improved efficiency and is more practical to be applied in the industry.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:20 ,  Issue: 11 )

Date of Publication:

Nov. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.