By Topic

High Throughput Data Mapping for Coarse-Grained Reconfigurable Architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yongjoo Kim ; Department of Electrical Engineering and Computer Science, Seoul National University, Seoul, Korea ; Jongeun Lee ; Aviral Shrivastava ; Jonghee W. Yoon
more authors

Coarse-grained reconfigurable arrays (CGRAs) are a very promising platform, providing both up to 10-100 MOps/mW of power efficiency and software programmability. However, this promise of CGRAs critically hinges on the effectiveness of application mapping onto CGRA platforms. While previous solutions have greatly improved the computation speed, they have largely ignored the impact of the local memory architecture on the achievable power and performance. This paper motivates the need for memory-aware application mapping for CGRAs, and proposes an effective solution for application mapping that considers the effects of various memory architecture parameters including the number of banks, local memory size, and the communication bandwidth between the local memory and the external main memory. Further we propose efficient methods to handle dependent data on a double-buffering local memory, which is necessary for recurrent loops. Our proposed solution achieves 59% reduction in the energy-delay product, which factors into about 47% and 22% reduction in the energy consumption and runtime, respectively, as compared to memory-unaware mapping for realistic local memory architectures. We also show that our scheme scales across a range of applications and memory parameters, and the runtime overhead of handling recurrent loops by our proposed methods can be less than 1%.

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:30 ,  Issue: 11 )