By Topic

Inclusion of Chemical-Mechanical Polishing Variation in Statistical Static Timing Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Foreman, E.A. ; Int. Bus. Machines, Essex Junction, VT, USA ; Habitz, P.A. ; Cheng, M.-C. ; Tamon, C.

Technology trends show the importance of modeling process variation in static timing analysis. With the advent of statistical static timing analysis (SSTA), multiple independent sources of variation can be modeled. This paper proposes a methodology for modeling metal interconnect process variation in SSTA. The developed methodology is applied in this study to investigate metal variation in SSTA resulting from chemical-mechanical polishing (CMP). Using our statistical methodology, we show that CMP variation has a smaller impact on chip performance as compared to other factors impacting metal process variation.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:30 ,  Issue: 11 )