Cart (Loading....) | Create Account
Close category search window
 

Structured covariance estimation for space-time adaptive processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Barton, T.A. ; Lincoln Lab., MIT, Lexington, MA, USA ; Smith, S.T.

Adaptive algorithms require a good estimate of the interference covariance matrix. In situations with limited sample support such an estimate is not available unless there is structure to be exploited. In applications such as radar space-time adaptive processing (STAP) the underlying covariance matrix is structured (e.g., block Toeplitz), and it is possible to exploit this structure to arrive at improved covariance estimates. Several structured covariance estimators have been proposed for this purpose. The efficacy of several of these are analyzed in this paper in the context of a variety of STAP algorithms. The SINR losses resulting from the different methods are compared. An example illustrating the superior performance resulting from a new maximum likelihood algorithm (based upon the expectation-maximization algorithm) is demonstrated using simulation and experimental data

Published in:

Acoustics, Speech, and Signal Processing, 1997. ICASSP-97., 1997 IEEE International Conference on  (Volume:5 )

Date of Conference:

21-24 Apr 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.