By Topic

High Performance Lithography Hotspot Detection With Successively Refined Pattern Identifications and Machine Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Duo Ding ; Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, USA ; J. Andres Torres ; David Z. Pan

Under the real and evolving manufacturing conditions, lithography hotspot detection faces many challenges. First, real hotspots become hard to identify at early design stages and hard to fix at post-layout stages. Second, false alarms must be kept low to avoid excessive and expensive post-processing hotspot removal. Third, full chip physical verification and optimization require very fast turn-around time. Last but not least, rapid technology advancement favors generic hotspot detection methodologies to avoid exhaustive pattern enumeration and excessive development/update as technology evolves. To address the above issues, we propose a high performance hotspot detection methodology consisting of: 1) a fast layout analyzer; 2) powerful hotspot pattern identifiers; and 3) a generic and efficient flow with successive performance refinements. We implement our algorithms with industry-strength engine under real manufacturing conditions and show that it significantly outperforms state-of-the-art algorithms in false alarms (2.4X to 2300X reduction) and runtime (5X to 237X reduction), meanwhile achieving similar or better hotspot accuracies. Compared with pattern matching, our method achieves higher prediction accuracy for hotspots that are not previously characterized, therefore, more detection generality when exhaustive pattern enumeration is too expensive to perform a priori. Such high performance hotspot detection is especially suitable for lithography-friendly physical design.

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:30 ,  Issue: 11 )