By Topic

Bounding Variable Values and Round-Off Effects Using Handelman Representations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
David Boland ; Circuits and Systems Research Group, Department of Electrical and Electronic Engineering, Imperial College London, London, U.K. ; George A. Constantinides

The precision used in an algorithm affects the error and performance of individual computations, the memory usage, and the potential parallelism for a fixed hardware budget. This paper describes a new method to determine the minimum precision required to meet a given error specification for an algorithm consisting of the basic algebraic operations. Using this approach, it is possible to significantly reduce the computational word-length in comparison to existing methods, and this can lead to superior hardware designs. We demonstrate the proposed procedure on an iteration of the conjugate gradient algorithm, achieving proofs of bounds that can translate to global word-length savings ranging from a few bits to proving the existence of ranges that must otherwise be assumed to be unbounded when using competing approaches. We also achieve comparable bounds to recent literature in a small fraction of the execution time, with greater scalability.

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:30 ,  Issue: 11 )