By Topic

A System-on-Chip Development of a Neuro–Fuzzy Embedded Agent for Ambient-Intelligence Environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Inés del Campo ; Department of Electricity and Electronics, Faculty of Sciences and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain ; Koldo Basterretxea ; Javier Echanobe ; Guillermo Bosque
more authors

This paper presents the development of a neuro-fuzzy agent for ambient-intelligence environments. The agent has been implemented as a system-on-chip (SoC) on a reconfigurable device, i.e., a field-programmable gate array. It is a hardware/software (HW/SW) architecture developed around a MicroBlaze processor (SW partition) and a set of parallel intellectual property cores for neuro-fuzzy modeling (HW partition). The SoC is an autonomous electronic device able to perform real-time control of the environment in a personalized and adaptive way, anticipating the desires and needs of its inhabitants. The scheme used to model the intelligent agent is a particular class of an adaptive neuro-fuzzy inference system with piecewise multilinear behavior. The main characteristics of our model are computational efficiency, scalability, and universal approximation capability. Several online experiments have been performed with data obtained in a real ubiquitous computing environment test bed. Results obtained show that the SoC is able to provide high-performance control and adaptation in a life-long mode while retaining the modeling capabilities of similar agent-based approaches implemented on larger computing machines.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:42 ,  Issue: 2 )