By Topic

Robustness of Quantitative Compressive Sensing MRI: The Effect of Random Undersampling Patterns on Derived Parameters for DCE- and DSC-MRI

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Smith, D.S. ; Inst. of Imaging Sci., Vanderbilt Univ., Nashville, TN, USA ; Xia Li ; Gambrell, J.V. ; Arlinghaus, L.R.
more authors

Compressive sensing (CS) in Cartesian magnetic resonance imaging (MRI) involves random partial Fourier acquisitions. The random nature of these acquisitions can lead to variance in reconstruction errors. In quantitative MRI, variance in the reconstructed images translates to an uncertainty in the derived quantitative maps. We show that for a spatially regularized 2 ×-accelerated human breast CS DCE-MRI acquisition with a 1922 matrix size, the coefficients of variation (CoVs) in voxel-level parameters due to the random acquisition are 1.1%, 0.96%, and 1.5% for the tissue parameters Ktrans, ve, and vp, with an average error in the mean of -2.5%, -2.0%, and -3.7%, respectively. Only 5% of the acquisition schemes had a systematic underestimation larger than than 4.2%, 3.7%, and 6.1%, respectively. For a 2× -accelerated rat brain CS DSC-MRI study with a 642 matrix size, the CoVs due to the random acquisition were 19%, 9.5%, and 15% for the cerebral blood flow and blood volume and mean transit time, respectively, and the average errors in the tumor mean were 9.2%, 0.49%, and -7.0%, respectively. Across 11000 different CS reconstructions, we saw no outliers in the distribution of parameters, suggesting that, despite the random undersampling schemes, CS accelerated quantitative MRI may have a predictable level of performance.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:31 ,  Issue: 2 )