Cart (Loading....) | Create Account
Close category search window
 

Route Toward High-Efficiency Single-Phase Cu _{\bf 2} ZnSn(S,Se) _{\bf 4} Thin-Film Solar Cells: Model Experiments and Literature Review

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Redinger, A. ; Lab. for Photovoltaics, Univ. of Luxembourg, Belvaux, Luxembourg ; Berg, D.M. ; Dale, P.J. ; Djemour, R.
more authors

Thin-film chalcogenide kesterites Cu2ZnSnS4 and Cu2 ZnSnSe4 (CZTSSe) are promising candidates for the next-generation thin-film solar cells. They exhibit a high natural abundance of Cu, Zn, Sn and S2, a high absorption coefficient, and a tunable direct bandgap between 1.0 and 1.5 eV. A prerequisite for the use of CZTSSe as absorber layers in photovoltaic applications on large scales is a detailed knowledge of the formation reaction. Recently, we have shown that a decomposition/formation equilibrium governs the formation reaction. The presence of Sn(S,Se) during the high-temperature preparation steps is essential to prevent decomposition. This improves the solar cell efficiency from 0.02% to 6.1%. In this paper, we show that the decomposition is universal. Absorbers produced by high-temperature coevaporation and samples produced by low-temperature precursor fabrication followed by annealing in a tube furnace in S or Se atmosphere are compared in order to elucidate that in all cases, the loss of Sn(S,Se) forms a degraded surface region. We demonstrate that the degraded surface of CZTSe absorbers contains grains of ZnSe. These new insights can be used to explain why some of the synthesis routines described in the literature yield much better efficiencies than others.

Published in:

Photovoltaics, IEEE Journal of  (Volume:1 ,  Issue: 2 )

Date of Publication:

Oct. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.