Cart (Loading....) | Create Account
Close category search window
 

Scalable multi-core simulation using parallel dynamic binary translation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Almer, O. ; Inst. for Comput. Syst. Archit., Univ. of Edinburgh, Edinburgh, UK ; Bohm, I. ; von Koch, T.E. ; Franke, B.
more authors

In recent years multi-core processors have seen broad adoption in application domains ranging from embedded systems through general-purpose computing to large-scale data centres. Simulation technology for multi-core systems, however, lags behind and does not provide the simulation speed required to effectively support design space exploration and parallel software development. While state-of-the-art instruction set simulators (ISS) for single-core machines reach or exceed the performance levels of speed-optimised silicon implementations of embedded processors, the same does not hold for multi-core simulators where large performance penalties are to be paid. In this paper we develop a fast and scalable simulation methodology for multi-core platforms based on parallel and just-in-time (JIT) dynamic binary translation (DBT). Our approach can model large-scale multi-core configurations, does not rely on prior profiling, instrumentation, or compilation, and works for all binaries targeting a state-of-the-art embedded multi-core platform implementing the ARCompact instruction set architecture (ISA). We have evaluated our parallel simulation methodology against the industry standard Splash-2 and EEMBC MULTIBENCH benchmarks and demonstrate simulation speeds up to 25,307 Mips on a 32-core ×86 host machine for as many as 2048 target processors whilst exhibiting minimal and near constant overhead.

Published in:

Embedded Computer Systems (SAMOS), 2011 International Conference on

Date of Conference:

18-21 July 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.