By Topic

Wireless Capsule Endoscopy Video Segmentation Using an Unsupervised Learning Approach Based on Probabilistic Latent Semantic Analysis With Scale Invariant Features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yao Shen ; Department of Computer Science and Engineering, College of Engineering, University of North Texas, Denton, USA ; Parthasarathy Guturu ; Bill P. Buckles

Since wireless capsule endoscopy (WCE) is a novel technology for recording the videos of the digestive tract of a patient, the problem of segmenting the WCE video of the digestive tract into subvideos corresponding to the entrance, stomach, small intestine, and large intestine regions is not well addressed in the literature. A selected few papers addressing this problem follow supervised leaning approaches that presume availability of a large database of correctly labeled training samples. Considering the difficulties in procuring sizable WCE training data sets needed for achieving high classification accuracy, we introduce in this paper an unsupervised learning approach that employs Scale Invariant Feature Transform (SIFT) for extraction of local image features and the probabilistic latent semantic analysis (pLSA) model used in the linguistic content analysis for data clustering. Results of experimentation indicate that this method compares well in classification accuracy with the state-of-the-art supervised classification approaches to WCE video segmentation.

Published in:

IEEE Transactions on Information Technology in Biomedicine  (Volume:16 ,  Issue: 1 )