By Topic

A Multiobjective Genetic Algorithm to Find Communities in Complex Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Pizzuti, C. ; Inst. of High Performance Comput. & Networking, Nat. Res. Council of Italy, Cosenza, Italy

A multiobjective genetic algorithm to uncover community structure in complex network is proposed. The algorithm optimizes two objective functions able to identify densely connected groups of nodes having sparse inter-connections. The method generates a set of network divisions at different hierarchical levels in which solutions at deeper levels, consisting of a higher number of modules, are contained in solutions having a lower number of communities. The number of modules is automatically determined by the better tradeoff values of the objective functions. Experiments on synthetic and real life networks show that the algorithm successfully detects the network structure and it is competitive with state-of-the-art approaches.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:16 ,  Issue: 3 )