By Topic

Power Control for Cognitive Radio Networks: Axioms, Algorithms, and Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sorooshyari, S. ; Bell Labs.-Alcatel-Lucent, Murray Hill, NJ, USA ; Chee Wei Tan ; Mung Chiang

The deployment of cognitive radio networks enables efficient spectrum sharing and opportunistic spectrum access. It also presents new challenges to the classical problem of interference management in wireless networks. This paper develops an axiomatic framework for power allocation in cognitive radio networks based on four goals: QoS protection to primary users, opportunism to secondary users, admissibility to secondary users, and autonomous operation by individual users. Two additional goals, licensing and versatility, which are desirable rather than essential, are also presented. A general class of Duo Priority Class Power Control (DPCPC) policies that satisfy such goals is introduced. Through theoretical analysis and simulation, it is shown that a specific interference-aware power-control algorithm reaches such goals.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:20 ,  Issue: 3 )